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Abstract

Recently, virtual staining has revolutionized histopathology by utilizing Al for efficient H&E staining, reducing the need for
specialized personnel. The use of virtual staining in veterinary medicine, particularly in transitioning from OCT to H&E, is
inadequately addressed in current research. We employed generative adversarial networks to convert OCT images from canine
and feline soft tissue sarcoma paraffin blocks into representations akin to H&E staining. The models were trained on 512x512
pixel paired and unpaired image patches, using a manually H&E stained image as a reference and OCT images as inputs. The
neural network model employing transfer learning failed to attain microscopic accuracy, necessitating a complete retraining
without transfer learning. Subsequent evaluations with Pix2Pix yielded no improvements, prompting a transition to ResNet,
U-net, and Dense U-net architectures, which also did not enhance performance. This study aimed to ascertain the feasibility of
utilizing the existing OCT database to generate pilot virtual staining on C-scan images through neural networks. Given that our
output images did not yield satisfactory results for veterinary oncology, further research is imperative to optimize the neural

network for virtually stained OCT images, with a focus on enhancing the OCT dataset.
Keywords: OCT, veterinary oncology, neural networks, non-invasive imaging, tumor diagnostics.

Introduction

Recently, virtual staining (VS) has transformed the
histopathology field, where specially trained artificial
intelligence (Al) employs standard H&E (hematoxylin
and eosin) staining as a reference (Li et al., 2021,
Tavolara et al.,, 2023). In veterinary oncology,
histopathology plays important role because it has
been accepted as gold standard. But because of several
important facts (sampling needs anesthesia, it is
invasive procedure and, for obtaining results, time is
needed), OCT (Optical Coherence Tomography) has
demonstrated potential as an efficient technique which
is more advanced because that can produce real-time,
non-invasive tissue evaluation, outlining tumor
margins during surgery and even assisting in tumor
type diagnosis (Ribeiro et al., 2022).

Thus far, OCT has been used for evaluating normal
skin structures in humans and various animals, as well
as skin lesions with dermatological and oncological
diseases (Winetraub et al., 2024). In veterinary
oncology, OCT has been utilized for skin and
subcutaneous tumors, demonstrating the capability to
distinguish these tumors to a certain percentage
accuracy (Cugmas et al., 2021).

VS in veterinary oncology leverages advanced deep
learning techniques to digitally replicate traditional
histological staining processes, offering a more
efficient, cost-effective, and environmentally friendly
alternative. This approach accelerates diagnosis, which
is crucial for both - patients and veterinarians, and is
environmentally sustainable by minimizing the need for
chemical stains. This method involves training neural
networks to transform unstained or differently stained
tissue images into VS images that mimic conventional
stains like H&E (Duplevska et al., 2024) or
immunohistochemical stains (Lahiani et al., 2019).

VS often employs generative adversarial networks
(GAN), such as the Pix2Pix model, designed for
image-to-image translation when paired datasets are
available. In the context of virtual staining in
veterinary medicine, Pix2Pix can be trained to convert
images from unlabeled tissue images into virtually
stained images that resemble traditional histological
stains or translate multispectral fluorescence images
into brightfield represantations without physically
applying dyes (Isola et al., 2017). This approach helps
save time and resources, and reduces the need for
tissue destruction, what is crucial in veterinary
oncology for diagnosing and surgically approaching
tumors (Rivenson et al., 2019, 2020).

Beyond Pix2Pix, GANSs in general are advanced neural
networks that create realistic synthetic data by
competing two models—the generator and the
discriminator.

CycleGAN extends this concept to perform unpaired
image translation. It is a type of artificial intelligence
model used to translate images from one style or
domain to another without needing exactly matched
images (paired examples) (Zhu et al., 2020), which is
especially useful when paired data is scarce. This
capability is useful for enhancing diagnostic
visualization, standardizing images from different
sources, or creating digital stains that mimic traditional
laboratory techniques, all while preserving important
tissue details.

ResNet or Residual Network is a deep neural network
architecture that is designed for transformation
between structurally similar but visually different
images (Xu et al., 2023b) and when trained effectively
is often used for image classification tasks, such as
diagnosing diseases from medical images. It includes
‘skip connections’ that help the network learn better by
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preventing issues like vanishing gradients. When
integrated with ResNet — forming CycleGAN with
ResNet — the model gains deeper learning capacity and
better detail preservation, improving the quality of
virtually stained images.

For segmentation purposes during virtual staining or
image analysis, architectures like U-Net are widely
used to precisely delineate tissue structures. U-Net is a
type of neural network which has an encoder-decoder
architecture: the encoder captures context by
progressively downsampling the image, while the
decoder restores the spatial details and combines them
with features from earlier stages through skip
connections. This design enables precise localization
even with limited training data. It is designed for image
segmentation, which means it helps to precisely locate
and outline features within images. It’s widely used in
medical and histological imaging because it helps to
identify and outline specific structures within images,
such as tissues or cells and can accurately segment
complex shapes even with limited training data.

An even more advanced version, Dense U-Net,
incorporates dense connections to improve feature
reuse and segmentation accuracy. These models
enable better visualization by improving the accuracy
and color balance of the VS images (Duplevska et al.,
2024) and therefore improving diagnosis by accurately
isolating specific tissue components in the virtually
stained images.

Advanced neural networks can be re-trained using
transfere learning (TL) to replicate
immunohistochemical stains on unstained samples,
enabling differentiation of tumor types where
traditional histopathology falls short (Cho et al., 2017).
TL is a powerful approach in deep learning that
enables a pre-trained model to be adapted to a new task
(Xu et al., 2023a).

The application of TL for VS from optical coherence
tomography to H&E stained samples in veterinary
medicine has not been explicitly documented in the
provided research papers. The papers primarily focus
on human medical applications, utilizing deep learning
techniques to transform histological images from one
stain type to another (Bai et al., 2023; Latonen et al.,
2024). These studies highlight the potential of virtual
staining in enhancing diagnostic workflows and
reducing the need for physical staining processes, but
they do not specifically address veterinary
applications.

While the field currently focuses on human
applications, the methodologies and technologies
developed could potentially be adapted for veterinary
medicine. In contrast to the focus on human medical
applications, the potential for virtual staining in
veterinary medicine remains largely unexplored in the
current literature. The adaptation of these techniques
to veterinary medicine would require the collection
and annotation of veterinary-specific histological data

to train the models effectively. This adaptation could
lead to significant advancements in veterinary
pathology, similar to those seen in human medicine.
By combining OCT with virtual staining, several
benefits can be achieved, including rapid acquisition
of real-time histological images in a non-invasive
manner (Winetraub et al., 2021). Images can be
obtained from multiple sites and sections as needed
and sent digitally to a pathologist immediately after
capture, potentially receiving feedback during surgery
- thereby optimizing surgical technique and scope
based on the acquired results. This integration of OCT
and virtual staining could significantly enhance the
accuracy of surgical margin assessment and improve
patient outcomes in veterinary oncology (Fabelo et al.,
2021). While early diagnosis and treatment are critical,
there is a concern regarding the risks associated with
anesthesia for histopathological sampling, which may
lead to suboptimal surgical decisions if not properly
managed. In some cases, it could help to distinguish
between surgical and non-surgical treatment as
appropriate depending on tumor type and location (De
Nardi et al., 2022). Further exploration of the
integration of OCT and virtual staining could lead to
groundbreaking advancements in veterinary surgical
oncology, ultimately benefiting both animal patients
and their owners.

The goal of this study was to understand if the current
OCT database could be used to produce the pilot
virtual staining (based on the neural networks) on our
C-scan images. We observed that STS tumor cells
appear brighter in OCT images and hypothesized that
the tumor becomes distinctive by applying the virtual
staining.

Materials and Methods

Preparation of tumor samples

Formalin-fixed tumor samples were obtained from the
biopsy submissions to a commercial veterinary
pathology laboratory (Matise Veterinary Pathology
service, Riga, Latvia). These samples originated from
client-owned dogs and cats for which the veterinarian-
clinician recommended excisional surgery. The details
of the tumor sample preparation, processing and
histopathological examination procedure have been
reported previously (Duplevska et al., 2024) with
exception that histological sections after cutting were
deparaffinized, stained with hematoxylin and eosin
and coverslipped.

After trimming, skin tissue samples that were diagnosed
as cancer (soft tissue sarcoma) in feline and canine
submissions, were stored in 10% formalin and provided
to veterinary pathology laboratory for tissue blocks
preparation and histological sections staining with
hematoxylin and eosin. In addition, detailed assessment
of tumor in corresponding H&E stained histological
sections was performed by a board-certified veterinary
pathologist Ilze Matise-van Houtana (Matise Veterinary
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Pathology service, Riga, Latvia). Tissue paraffin blocks
from 51 soft tissue sarcomas samples were used for
further analysis by OCT scanning at Biophotonics
laboratory (University of Latvia).

Image registration

Spectral-domain OCT (sd-OCT) images were acquired
using Telesto Il (Thorlabs, Newton, NJ, USA) OCT
device equipped with 1325 nm/100 nm spectral
bandwidth SLD excitation light source, yielding ~ 8-
micron axial resolution in tissue. The lateral resolution
of OCT-LK2 telecentric scan-lens (EFL = 18 mm
Thorlabs) was ~7 um. The tissue sample from paraffin
block was placed on the OCT sample holder and the
3D OCT image cube was acquired comprising the
multiple B-scan images, keeping the beam focus point
approximately 50 pm below the tissue surface and
slightly tilting the samples. Galvanometric mirror-
based scan stage operated at a 5 kHZ scan rate, and
used the maximum number of 20 A-scans and 6 B-
scans for the averaging. The pixel size in XY direction
was set manually for 2 microns and the pixel size in z
direction was 2.25 microns. The OCT images were
collected in 1 X 1 mm scan area, and up to 2 mm
penetration depth. Thorlmage OCT software
(Thorlabs) was used to perform volume rendering of
z-stacked OCT data, displaying the grayscale view
within 20-95 dB dynamic range, and subsequently
extracting and storing the 2D cross sectional XY plane
images across the sample in png format.
Ex vivo STS tissue block samples, prepared using
standard paraffin technique, were analysed by OCT.
The image features within the top crossectional XY
plane from each 3D OCT rendering were correlated
with histological structures identified in H&E stained
slides, appearing as the mirror images to the
corresponding cross sections in OCT.

Image preprocessing

Prior to feeding the raw data to the proposed neural
network, it needs to be processed and registered. Thus,
both OCT image data and H&E stained brightfield
image data were spatially aligned. The raw input STS
images were extracted with the open-source
OpenSlide library. During the research, the necessity
of both (OCT and H&E brightfield) raw data type pre-
processing was established. The H&E stained data
underwent  only  background  pixel  color
standardization (white color) as this type of images
was chosen as those that are referenced to during the
registration process.

Initially, processed images were converted to
grayscale. Then, the proposed algorithm initialized the
ORB detector that detected keypoints and extracted
descriptors for each image. The code created a
descriptor matcher and matched descriptors between
the two images using the Hamming distance. In
addition, we filtered and matched descriptors based on
their distances, discarding the matches that exceeded
the chosen threshold. Finally, the algorithm extracted

the corresponding Kkeypoints from the matched
keypoints.

When the matching process was completed, the
RANSAC (Random Sample Consensus) algorithm
(Derpanis, 2010) was used to find the homography
matrix, which represents the transformation between
the two images. Then the computed homography was
applied to warp the OCT image and align it with the
H&E stained one, resulting in the registered image
data. The final step before using the registered data for
the further virtual staining process was to split each
image pair into tiles of 512x512 pixels.

Virtual staining

Since the images used for training were not
automaticly paired, but same regions were manually
cropped, where their accuracy cannot be objectively
measured, several approaches were tested.
First approach where we assumed that the manually
marked areas do not form pairs and do not exactly
match each other. We tried transfer learning in virtual
staining tasks. Transfer learning was employed to
investigate the applicability of previously trained
virtual staining model originally trained on
fluorescence images stained with H&E to a different
input - OCT images (Duplevska et al., 2024).
The use of transfer learning aimed to evaluate whether
a pre-trained model could generalize well enough to
produce histologically meaningful virtual stains on
new data without further fine-tuning or parameter
adjustment.

As we speculated that the images could be paired by
manual selection, an attempt was made to train the
neural network anew without transfer learning using
previous methods.

Additionally, the standard Pix2Pix architecture
without dense components was tested. This is a classic
Pix2Pix model with no prior customization.

After that, a modified Pix2Pix framework, a type of
conditional generative adversarial network (cGAN)
was used where the generator was based on a Dense
U-Net architecture. The Dense U-Net replaced
standard convolutional blocks with densely connected
layers to enhance feature propagation and preserve
fine tissue structures, such as nuclei and connective
tissue boundaries. The model was trained on paired
datasets consisting of multispectral fluorescence
images (captured in DAPI) and their corresponding
manually H&E-stained brightfield images. Training
was performed on image patches of 512x512 pixels
over 40 epochs, using 800 patches for training and 200
for validation. To stabilize training and improve detail
retention, further enhancements were applied to both
the generator and discriminator, including the use of
instance normalization and spectral normalization.
CycleGAN with U-Net approach the ResNet
connections in the CycleGAN architecture were
replaced with U-Net connections.
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Results and Discussion
In our case, transfer learning strategy in virtual
staining tasks was particularly relevant for veterinary

Figure 1

oncology, where access to labeled training data is
limited and manual histological staining is time-
consuming and resource-intensive.

Soft tissue sarcoma from dog - virtually stained with Pix2Pix dense transfer learning OCT

Marally ared

Results in Figure 1 showed that since OCT and
brightfield images contain entirely different types of
structural and spectral features, the neural network
could interpret only the isolated pink dots representing
the maxima. Training from scratch unfortunately did
not produce positive results — the output of the model
did not yield interpretable images, see “Figure 2’.

Figure 2
STS virtually stained with Pix2Pix dense OCT

In our previous work with autofluorescence and H&E
samples, classic Pix2Pix model with no prior
customization performed poorly (Duplevska et al.,
2024). Similar results can be observed in Figure 3.
Since the input and reference images differ
significantly in this case and are not exactly a paired
set, the CycleGAN architecture was used. Using
CycleGAN with ResNet the VS image began to
display contours and cell edges, and resembled the
structure of OCT sample, see ‘Figure 4°.

Virtuly stained image

Figure 3
STS virtually stained with Pix2Pix U-net OCT

Figure 4
STS virtually stained with CycleGAN with ResNet

In CycleGAN with U-Net approach, the result was
worse than in CycleGAN with ResNet because virtually
stained image lost some structural details, Figure 5.
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Figure 5 While VS promises numerous advantages, including

STS virtually stained with CycleGAN with U-net OCT reduced resource consumption and increased
efficiency, other approaches should be applied instead
or together with OCT. Preliminary work is especially
challenging when there is no prior research done with
veterinary samples. In future work, we plan to improve
A the results with the help of a larger dataset. Currently,
gl we used 51 tumor sample slides, but other applications
in the literature indicate that Pix2Pix and CycleGAN
require 300+ slides. In future, we plan to pair the data
automatically using algorithms, rather than manually
to test additional neural networks models, to improve
|5 v acquisition time, to test different optical modalities, as
¥ 1 ; ; : v well as to apply transfer learning by utilizing
' S OCT/H&E datasets from open repositories or pre-
existing modalities and to apply trained models.

Dense U-Net architecture without ResNet or U-Net
blocks did not improve after CycleGAN with U-net
was applied. In Figure 6, the virtually stained image
did not achieve higher quality compared to the
previous models.

Conclusions

1. Virtual staining may standardize veterinary
histopathology as a rapid, label-free alternative to
traditional methods, necessitating improvements in
pilot OCT to H&E virtual staining results for clinical

Figure 6
STS virtually stained with CycleGAN with Dense U- acceptance. _
Net 2. Accelerating model development necessitates

dataset-specific tuning and preprocessing.
3. Additional research is imperative for training neural
networks on virtually stained OCT images,
particularly focusing on the OCT dataset.
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