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Abstract 
Recently, virtual staining has revolutionized histopathology by utilizing AI for efficient H&E staining, reducing the need for 

specialized personnel. The use of virtual staining in veterinary medicine, particularly in transitioning from OCT to H&E, is 

inadequately addressed in current research. We employed generative adversarial networks to convert OCT images from canine 

and feline soft tissue sarcoma paraffin blocks into representations akin to H&E staining. The models were trained on 512x512 

pixel paired and unpaired image patches, using a manually H&E stained image as a reference and OCT images as inputs. The 

neural network model employing transfer learning failed to attain microscopic accuracy, necessitating a complete retraining 

without transfer learning. Subsequent evaluations with Pix2Pix yielded no improvements, prompting a transition to ResNet, 

U-net, and Dense U-net architectures, which also did not enhance performance. This study aimed to ascertain the feasibility of

utilizing the existing OCT database to generate pilot virtual staining on C-scan images through neural networks. Given that our

output images did not yield satisfactory results for veterinary oncology, further research is imperative to optimize the neural

network for virtually stained OCT images, with a focus on enhancing the OCT dataset.
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Introduction 

Recently, virtual staining (VS) has transformed the 

histopathology field, where specially trained artificial 

intelligence (AI) employs standard H&E (hematoxylin 

and eosin) staining as a reference (Li et al., 2021; 

Tavolara et al., 2023). In veterinary oncology, 

histopathology plays important role because it has 

been accepted as gold standard. But because of several 

important facts (sampling needs anesthesia, it is 

invasive procedure and, for obtaining results, time is 

needed), OCT (Optical Coherence Tomography) has 

demonstrated potential as an efficient technique which 

is more advanced because that can produce real-time, 

non-invasive tissue evaluation, outlining tumor 

margins during surgery and even assisting in tumor 

type diagnosis (Ribeiro et al., 2022).  

Thus far, OCT has been used for evaluating normal 

skin structures in humans and various animals, as well 

as skin lesions with dermatological and oncological 

diseases (Winetraub et al., 2024). In veterinary 

oncology, OCT has been utilized for skin and 

subcutaneous tumors, demonstrating the capability to 

distinguish these tumors to a certain percentage 

accuracy (Cugmas et al., 2021).  

VS in veterinary oncology leverages advanced deep 

learning techniques to digitally replicate traditional 

histological staining processes, offering a more 

efficient, cost-effective, and environmentally friendly 

alternative. This approach accelerates diagnosis, which 

is crucial for both - patients and veterinarians, and is 

environmentally sustainable by minimizing the need for 

chemical stains. This method involves training neural 

networks to transform unstained or differently stained 

tissue images into VS images that mimic conventional 

stains like H&E (Dupļevska et al., 2024) or 

immunohistochemical stains (Lahiani et al., 2019). 

VS often employs generative adversarial networks 

(GAN), such as the Pix2Pix model, designed for 

image-to-image translation when paired datasets are 

available. In the context of virtual staining in 

veterinary medicine, Pix2Pix can be trained to convert 

images from unlabeled tissue images into virtually 

stained images that resemble traditional histological 

stains or translate multispectral fluorescence images 

into brightfield represantations without physically 

applying dyes (Isola et al., 2017). This approach helps 

save time and resources, and reduces the need for 

tissue destruction, what is crucial in veterinary 

oncology for diagnosing and surgically approaching 

tumors (Rivenson et al., 2019, 2020).  

Beyond Pix2Pix, GANs in general are advanced neural 

networks that create realistic synthetic data by 

competing two models—the generator and the 

discriminator.  

CycleGAN extends this concept to perform unpaired 

image translation. It is a type of artificial intelligence 

model used to translate images from one style or 

domain to another without needing exactly matched 

images (paired examples) (Zhu et al., 2020), which is 

especially useful when paired data is scarce. This 

capability is useful for enhancing diagnostic 

visualization, standardizing images from different 

sources, or creating digital stains that mimic traditional 

laboratory techniques, all while preserving important 

tissue details. 

ResNet or Residual Network is a deep neural network 

architecture that is designed for transformation 

between structurally similar but visually different 

images (Xu et al., 2023b) and when trained effectively 

is often used for image classification tasks, such as 

diagnosing diseases from medical images. It includes 

ʽskip connectionsʼ that help the network learn better by 
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preventing issues like vanishing gradients. When 

integrated with ResNet – forming CycleGAN with 

ResNet – the model gains deeper learning capacity and 

better detail preservation, improving the quality of 

virtually stained images. 

For segmentation purposes during virtual staining or 

image analysis, architectures like U-Net are widely 

used to precisely delineate tissue structures. U-Net is a 

type of neural network which has an encoder-decoder 

architecture: the encoder captures context by 

progressively downsampling the image, while the 

decoder restores the spatial details and combines them 

with features from earlier stages through skip 

connections. This design enables precise localization 

even with limited training data. It is designed for image 

segmentation, which means it helps to precisely locate 

and outline features within images. It’s widely used in 

medical and histological imaging because it helps to 

identify and outline specific structures within images, 

such as tissues or cells and can accurately segment 

complex shapes even with limited training data.  

An even more advanced version, Dense U-Net, 

incorporates dense connections to improve feature 

reuse and segmentation accuracy. These models 

enable better visualization by improving the accuracy 

and color balance of the VS images (Dupļevska et al., 

2024) and therefore improving diagnosis by accurately 

isolating specific tissue components in the virtually 

stained images.  

Advanced neural networks can be re-trained using 

transfere learning (TL) to replicate 

immunohistochemical stains on unstained samples, 

enabling differentiation of tumor types where 

traditional histopathology falls short (Cho et al., 2017). 

TL is a powerful approach in deep learning that 

enables a pre-trained model to be adapted to a new task 

(Xu et al., 2023a).  

The application of TL for VS from optical coherence 

tomography to H&E stained samples in veterinary 

medicine has not been explicitly documented in the 

provided research papers. The papers primarily focus 

on human medical applications, utilizing deep learning 

techniques to transform histological images from one 

stain type to another (Bai et al., 2023; Latonen et al., 

2024). These studies highlight the potential of virtual 

staining in enhancing diagnostic workflows and 

reducing the need for physical staining processes, but 

they do not specifically address veterinary 

applications. 

While the field currently focuses on human 

applications, the methodologies and technologies 

developed could potentially be adapted for veterinary 

medicine. In contrast to the focus on human medical 

applications, the potential for virtual staining in 

veterinary medicine remains largely unexplored in the 

current literature. The adaptation of these techniques 

to veterinary medicine would require the collection 

and annotation of veterinary-specific histological data 

to train the models effectively. This adaptation could 

lead to significant advancements in veterinary 

pathology, similar to those seen in human medicine. 

By combining OCT with virtual staining, several 

benefits can be achieved, including rapid acquisition 

of real-time histological images in a non-invasive 

manner (Winetraub et al., 2021). Images can be 

obtained from multiple sites and sections as needed 

and sent digitally to a pathologist immediately after 

capture, potentially receiving feedback during surgery 

- thereby optimizing surgical technique and scope 

based on the acquired results. This integration of OCT 

and virtual staining could significantly enhance the 

accuracy of surgical margin assessment and improve 

patient outcomes in veterinary oncology (Fabelo et al., 

2021). While early diagnosis and treatment are critical, 

there is a concern regarding the risks associated with 

anesthesia for histopathological sampling, which may 

lead to suboptimal surgical decisions if not properly 

managed. In some cases, it could help to distinguish 

between surgical and non-surgical treatment as 

appropriate depending on tumor type and location (De 

Nardi et al., 2022). Further exploration of the 

integration of OCT and virtual staining could lead to 

groundbreaking advancements in veterinary surgical 

oncology, ultimately benefiting both animal patients 

and their owners. 

The goal of this study was to understand if the current 

OCT database could be used to produce the pilot 

virtual staining (based on the neural networks) on our 

C-scan images. We observed that STS tumor cells 

appear brighter in OCT images and hypothesized that 

the tumor becomes distinctive by applying the virtual 

staining. 

 

Materials and Methods 

Preparation of tumor samples 

Formalin-fixed tumor samples were obtained from the 

biopsy submissions to a commercial veterinary 

pathology laboratory (Matise Veterinary Pathology 

service, Riga, Latvia). These samples originated from 

client-owned dogs and cats for which the veterinarian-

clinician recommended excisional surgery. The details 

of the tumor sample preparation, processing and 

histopathological examination procedure have been 

reported previously (Dupļevska et al., 2024) with 

exception that histological sections after cutting were 

deparaffinized, stained with hematoxylin and eosin 

and coverslipped.   

After trimming, skin tissue samples that were diagnosed 

as cancer (soft tissue sarcoma) in feline and canine 

submissions, were stored in 10% formalin and provided 

to veterinary pathology laboratory for tissue blocks 

preparation and histological sections staining with 

hematoxylin and eosin. In addition, detailed assessment 

of tumor in corresponding H&E stained histological 

sections was performed by a board-certified veterinary 

pathologist Ilze Matīse-van Houtana (Matise Veterinary 
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Pathology service, Riga, Latvia). Tissue paraffin blocks 

from 51 soft tissue sarcomas samples were used for 

further analysis by OCT scanning at Biophotonics 

laboratory (University of Latvia).  

Image registration 

Spectral-domain OCT (sd-OCT) images were acquired 

using Telesto II (Thorlabs, Newton, NJ, USA) OCT 

device equipped with 1325 nm/100 nm spectral 

bandwidth SLD excitation light source, yielding ~ 8-

micron axial resolution in tissue. The lateral resolution 

of OCT-LK2 telecentric scan-lens (EFL = 18 mm 

Thorlabs) was ~7 μm. The tissue sample from paraffin 

block was placed on the OCT sample holder and the 

3D OCT image cube was acquired comprising the 

multiple B-scan images, keeping the beam focus point 

approximately 50 μm below the tissue surface and 

slightly tilting the samples. Galvanometric mirror-

based scan stage operated at a 5 kHZ scan rate, and 

used the maximum number of 20 A-scans and 6 B-

scans for the averaging. The pixel size in XY direction 

was set manually for 2 microns and the pixel size in z 

direction was 2.25 microns. The OCT images were 

collected in 1 x 1 mm scan area, and up to 2 mm 

penetration depth. ThorImage OCT software 

(Thorlabs) was used to perform volume rendering of 

z-stacked OCT data, displaying the grayscale view 

within 20-95 dB dynamic range, and subsequently 

extracting and storing the 2D cross sectional XY plane 

images across the sample in png format. 

Ex vivo STS tissue block samples, prepared using 

standard paraffin technique, were analysed by OCT. 

The image features within the top crossectional XY 

plane from each 3D OCT rendering were correlated 

with histological structures identified in H&E stained 

slides, appearing as the mirror images to the 

corresponding cross sections in OCT. 

Image preprocessing 

Prior to feeding the raw data to the proposed neural 

network, it needs to be processed and registered. Thus, 

both OCT image data and H&E stained brightfield 

image data were spatially aligned. The raw input STS 

images were extracted with the open-source 

OpenSlide library. During the research, the necessity 

of both (OCT and H&E brightfield) raw data type pre-

processing was established. The H&E stained data 

underwent only background pixel color 

standardization (white color) as this type of images 

was chosen as those that are referenced to during the 

registration process. 

Initially, processed images were converted to 

grayscale. Then, the proposed algorithm initialized the 

ORB detector that detected keypoints and extracted 

descriptors for each image. The code created a 

descriptor matcher and matched descriptors between 

the two images using the Hamming distance. In 

addition, we filtered and matched descriptors based on 

their distances, discarding the matches that exceeded 

the chosen threshold. Finally, the algorithm extracted 

the corresponding keypoints from the matched 

keypoints. 

When the matching process was completed, the 

RANSAC (Random Sample Consensus) algorithm 

(Derpanis, 2010) was used to find the homography 

matrix, which represents the transformation between 

the two images. Then the computed homography was 

applied to warp the OCT image and align it with the 

H&E stained one, resulting in the registered image 

data. The final step before using the registered data for 

the further virtual staining process was to split each 

image pair into tiles of 512×512 pixels. 

Virtual staining 

Since the images used for training were not 

automaticly paired, but same regions were manually 

cropped, where their accuracy cannot be objectively 

measured, several approaches were tested. 

First approach where we assumed that the manually 

marked areas do not form pairs and do not exactly 

match each other. We tried transfer learning in virtual 

staining tasks. Transfer learning was employed to 

investigate the applicability of previously trained 

virtual staining model originally trained on 

fluorescence images stained with H&E to a different 

input - OCT images (Dupļevska et al., 2024).  

The use of transfer learning aimed to evaluate whether 

a pre-trained model could generalize well enough to 

produce histologically meaningful virtual stains on 

new data without further fine-tuning or parameter 

adjustment. 

As we speculated that the images could be paired by 

manual selection, an attempt was made to train the 

neural network anew without transfer learning using 

previous methods.  

Additionally, the standard Pix2Pix architecture 

without dense components was tested. This is a classic 

Pix2Pix model with no prior customization.  

After that, a modified Pix2Pix framework, a type of 

conditional generative adversarial network (cGAN) 

was used where the generator was based on a Dense 

U-Net architecture. The Dense U-Net replaced 

standard convolutional blocks with densely connected 

layers to enhance feature propagation and preserve 

fine tissue structures, such as nuclei and connective 

tissue boundaries. The model was trained on paired 

datasets consisting of multispectral fluorescence 

images (captured in DAPI) and their corresponding 

manually H&E-stained brightfield images. Training 

was performed on image patches of 512×512 pixels 

over 40 epochs, using 800 patches for training and 200 

for validation. To stabilize training and improve detail 

retention, further enhancements were applied to both 

the generator and discriminator, including the use of 

instance normalization and spectral normalization. 

CycleGAN with U-Net approach the ResNet 

connections in the CycleGAN architecture were 

replaced with U-Net connections. 
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Results and Discussion 

In our case, transfer learning strategy in virtual 

staining tasks was particularly relevant for veterinary 

oncology, where access to labeled training data is 

limited and manual histological staining is time-

consuming and resource-intensive. 

 

Figure 1 

Soft tissue sarcoma from dog - virtually stained with Pix2Pix dense transfer learning OCT 

 
 

Results in Figure 1 showed that since OCT and 

brightfield images contain entirely different types of 

structural and spectral features, the neural network 

could interpret only the isolated pink dots representing 

the maxima. Training from scratch unfortunately did 

not produce positive results — the output of the model 

did not yield interpretable images, see ʽFigure 2ʼ. 

 

Figure 2 

STS virtually stained with Pix2Pix dense OCT 

 

 
 

In our previous work with autofluorescence and H&E 

samples, classic Pix2Pix model with no prior 

customization performed poorly (Dupļevska et al., 

2024). Similar results can be observed in Figure 3.  

Since the input and reference images differ 

significantly in this case and are not exactly a paired 

set, the CycleGAN architecture was used. Using 

CycleGAN with ResNet the VS image began to 

display contours and cell edges, and resembled the 

structure of OCT sample, see ʽFigure 4ʼ.  

 

 

 

 

 

Figure 3 

STS virtually stained with Pix2Pix U-net OCT 

 

 
 

Figure 4 

STS virtually stained with CycleGAN with ResNet 

 

 
 

In CycleGAN with U-Net approach, the result was 

worse than in CycleGAN with ResNet because virtually 

stained image lost some structural details, Figure 5. 
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Figure 5 

STS virtually stained with CycleGAN with U-net OCT 

 

 
 

Dense U-Net architecture without ResNet or U-Net 

blocks did not improve after CycleGAN with U-net 

was applied. In Figure 6, the virtually stained image 

did not achieve higher quality compared to the 

previous models. 

 

Figure 6 

STS virtually stained with CycleGAN with Dense U-

Net 

 
 

While VS promises numerous advantages, including 

reduced resource consumption and increased 

efficiency, other approaches should be applied instead 

or together with OCT. Preliminary work is especially 

challenging when there is no prior research done with 

veterinary samples. In future work, we plan to improve 

the results with the help of a larger dataset. Currently, 

we used 51 tumor sample slides, but other applications 

in the literature indicate that Pix2Pix and CycleGAN 

require 300+ slides. In future, we plan to pair the data 

automatically using algorithms, rather than manually 

to test additional neural networks models, to improve 

acquisition time, to test different optical modalities, as 

well as to apply transfer learning by utilizing 

OCT/H&E datasets from open repositories or pre-

existing modalities and to apply trained models. 

 

Conclusions 

1. Virtual staining may standardize veterinary 

histopathology as a rapid, label-free alternative to 

traditional methods, necessitating improvements in 

pilot OCT to H&E virtual staining results for clinical 

acceptance. 

2. Accelerating model development necessitates 

dataset-specific tuning and preprocessing. 

3. Additional research is imperative for training neural 

networks on virtually stained OCT images, 

particularly focusing on the OCT dataset. 

 

Acknowledgements 

The research was funded by the Latvian Council of 

Science, project lzp-2022/1-0274 ʽHistological 

recognition and analysis of veterinary tumors surgical 

margins by using artificial intelligence and multimodal 

imagingʼ and supported by project ʽStrengthening the 

Institutional Capacity of LBTU for Excellence in 

Studies and Researchʼ, funded by The Recovery and 

Resilience Facility. 

 

References 

Bai, B., Yang, X., Li, Y., Zhang, Y., Pillar, N., & Ozcan, A. (2023). Deep learning-enabled virtual histological staining 

of biological samples. Light, Science & Applications, 12(1), 57. https://doi.org/10.1038/s41377-023-01104-7  

Cho, H., Lim, S., Choi, G., & Min, H. (2017). Neural Stain-Style Transfer Learning using GAN for 

Histopathological Images (arXiv:1710.08543). arXiv. https://doi.org/10.48550/arXiv.1710.08543  

Cugmas, B., Viškere, D., Čiževskis, O., Melderis, M., Rubins, U., & Tamosiunas, M. (2021). Optical coherence 

tomography and Raman spectroscopy for ex vivo characterization of canine and feline skin and subcutaneous 

tumors: Preliminary results. Optical Biopsy XIX: Toward Real-Time Spectroscopic Imaging and Diagnosis, 

Article 11636, 20–26. 

De Nardi, A. B., Dos Santos Horta, R., Fonseca-Alves, C. E., De Paiva, F. N., Linhares, L. C. M., Firmo, B. F., 

…, & Dagli, M. L. Z. (2022). Diagnosis, Prognosis and Treatment of Canine Cutaneous and Subcutaneous 

Mast Cell Tumors. Cells, 11(4), 618. https://doi.org/10.3390/cells11040618 

Derpanis, K. G. (2010). ʻOverview of the RANSAC Algorithmʼ. Version 1.2, York University. http://www.cse. 

yorku.ca/~kosta/CompVis_Notes/ransac.pdf  

Dupļevska, D., Maļiks, R., Tamošiūnas, M., Melderis, M., Viškere, D., Cugmas, B., …, & Matīse-van Houtana, 

I. (2024). Interpreting microscopic structures in virtually stained histological sections for veterinary oncology 

applications. Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXII, Article 

12831, 113–128. https://doi.org/10.1117/12.3023420.short 

https://doi.org/10.1038/s41377-023-01104-7
https://doi.org/10.48550/arXiv.1710.08543
https://doi.org/10.3390/cells11040618
http://www.cse.yorku.ca/~kosta/CompVis_Notes/ransac.pdf
http://www.cse.yorku.ca/~kosta/CompVis_Notes/ransac.pdf
https://doi.org/10.1117/12.3023420.short


VIRTUAL STAINING FROM  

OPTICAL COHERENCE TOMOGRAPHY  

TO HEMATOXYLIN AND EOSIN  

STAINED SKIN TUMOR SAMPLES IN PETS 

 Daira Viškere, Diāna Dupļevska, Ilze 

Matīse-van Houtana, Romans Maļiks, 

Roberts Kadiķis, Blaž Cugmas, 

Mindaugas Tamošiūnas 

 

133 RESEARCH FOR RURAL DEVELOPMENT 2025, VOLUME 40 

Fabelo, C., Selmic, L. E., Huang, P., Samuelson, J. P., Reagan, J. K., Kalamaras, A., …, & Boppart, S. A. (2021). 

Evaluating optical coherence tomography for surgical margin assessment of canine mammary tumours. 

Veterinary and Comparative Oncology, 19(4), 697–706. https://doi.org/10.1111/vco.12632 

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-To-Image Translation With Conditional Adversarial 

Networks. 1125–1134. https://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Trans 

lation_With_CVPR_2017_paper.html 

Lahiani, A., Gildenblat, J., Klaman, I., Albarqouni, S., Navab, N., & Klaiman, E. (2019). Virtualization of Tissue 

Staining in Digital Pathology Using an Unsupervised Deep Learning Approach (pp. 47–55). 

https://doi.org/10.1007/978-3-030-23937-4_6 

Latonen, L., Koivukoski, S., Khan, U., & Ruusuvuori, P. (2024). Virtual staining for histology by deep learning. 

Trends in Biotechnology, 42(9), 1177–1191. https://doi.org/10.1016/j.tibtech.2024.02.009 

Li, J., Garfinkel, J., Zhang, X., Wu, D., Zhang, Y., de Haan, K., …, & Ozcan, A. (2021). Biopsy-free in vivo 

virtual histology of skin using deep learning. Light: Science & Applications, 10(1), Article 1. 

https://doi.org/10.1038/s41377-021-00674-8 

Ribeiro, P. R., Bianchi, M. V., Bandinelli, M. B., Rosa, R. B., Echenique, J. V. Z., Serpa Stolf, A., …, & Pavarini, 

S. P. (2022). Pathological aspects of cutaneous mast cell tumors with metastases in 49 dogs. Veterinary 

Pathology, 59(6), 922–930. https://doi.org/10.1177/03009858221114468 

Rivenson, Y., Wang, H., Wei, Z., de Haan, K., Zhang, Y., Wu, Y., …, & Ozcan, A. (2019). Virtual histological 

staining of unlabelled tissue-autofluorescence images via deep learning. Nature Biomedical Engineering, 3(6), 

Article 6. https://doi.org/10.1038/s41551-019-0362-y 

Rivenson, Y., De Haan, K., Wallace, W. D., & Ozcan, A. (2020). Emerging Advances to Transform 

Histopathology Using Virtual Staining. BME Frontiers, 2020, Article 9647163. https://doi.org/10.34133/ 

2020/9647163 

Tavolara, T. E., Su, Z., Gurcan, M. N., & Niazi, M. K. K. (2023). One label is all you need: Interpretable AI-

enhanced histopathology for oncology. Seminars in Cancer Biology, 97, 70–85. https://doi.org/10.1016/ 

j.semcancer.2023.09.006 

Winetraub, Y., Yuan, E., Terem, I., Yu, C., Chan, W., Do, H., …, & Hong, M. (2021). OCT2Hist: Non-invasive 

virtual biopsy using optical coherence tomography. MedRxiv, 2021–03. 

Winetraub, Y., Van Vleck, A., Yuan, E., Terem, I., Zhao, J., Yu, C., …, & de la Zerda, A. (2024). Noninvasive 

virtual biopsy using micro-registered optical coherence tomography (OCT) in human subjects. Science 

Advances, 10(15), Article 5794. https://doi.org/10.1126/sciadv.adi5794 

Xu, W., Fu, Y.-L., & Zhu, D. (2023a). ResNet and its application to medical image processing: Research progress 

and challenges. Computer Methods and Programs in Biomedicine, 240, Article 107660. https://doi.org/ 

10.1016/j.cmpb.2023.107660 

Xu, X., Xiao, Z., Zhang, F., Wang, C., Wei, B., Wang, Y., …, & Xu, F. (2023b). CellVisioner: A Generalizable 

Cell Virtual Staining Toolbox based on Few-Shot Transfer Learning for Mechanobiological Analysis. 

Research, 6, Article 0285. https://doi.org/10.34133/research.0285 

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2020). Unpaired Image-to-Image Translation using Cycle-Consistent 

Adversarial Networks (arXiv:1703.10593). arXiv. https://doi.org/10.48550/arXiv.1703.10593 

https://doi.org/10.1111/vco.12632
https://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html
https://doi.org/10.1007/978-3-030-23937-4_6
https://doi.org/10.1016/j.tibtech.2024.02.009
https://doi.org/10.1038/s41377-021-00674-8
https://doi.org/10.1177/03009858221114468
https://doi.org/10.1038/s41551-019-0362-y
https://doi.org/10.34133/2020/9647163
https://doi.org/10.34133/2020/9647163
https://doi.org/10.1016/j.semcancer.2023.09.006
https://doi.org/10.1016/j.semcancer.2023.09.006
https://doi.org/10.1126/sciadv.adi5794
https://doi.org/10.1016/j.cmpb.2023.107660
https://doi.org/10.1016/j.cmpb.2023.107660
https://doi.org/10.34133/research.0285
https://doi.org/10.48550/arXiv.1703.10593

	Daira Viškere, Diāna Dupļevska, Ilze Matīse-van Houtana, Romans Maļiks, Roberts Kadiķis, Blaž Cugmas, Mindaugas Tamošiūnas. Virtual staining from optical coherence tomography to hematoxylin and eosin stained skin tumor samples in pets. DOI: 10.22616/RRD.31.2025.016
	Abstract
	Keywords
	Introduction
	Materials and Methods
	Preparation of tumor samples
	Image registration
	Image preprocessing 
	Virtual staining

	Results and Discussion
	Conclusions
	Acknowledgements
	References



