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Abstract 
Galactomannans, composed of galactose and mannose, may form gels and are considered safe because of their non-toxic, 

biodegradable, and biocompatible nature. As a result, they are widely utilized in the food industry as stabilizers and thickeners. 

Among galactomannan producing species, guar gum and locust bean gum are particularly important due to their economical 

relevance. Guar gum and locust bean gum are often adulterated with cellulose gums like xanthan gum and carboxymethyl 

cellulose (CMC). Adulteration of galactomannans with other gums may introduce uncertainties regarding functionality and 

complicate quality control, posing a potential problem for the food industry. Among the different techniques which have been 

used for determining and characterizing galactomannans, Fourier Transform Infrared Spectroscopy stands out. Especially when 

coupled to Attenuated Total Reflection (ATR), analyses are performed rapidly, with a minimum sample preparation, and 

without the need for solvent or previous extraction mechanisms. However, food is a very complex matrix that contains a high 

number of components which generate a multitude of spectral information and large data sets. Consequently, additional data 

processing tools such as chemometrics are needed to be able to draw useful information from spectra. Our goal in this work is 

to show how to optimize conditions for instrumental analysis by infrared spectroscopy of galactomannans and its constituent 

monomers and create a chemometric model where galactomannans could be differentiated as a single group. We successfully 

optimized the PCA model obtained after chemometric processing of infrared data through reducing dimensions by loadings 

selection.  
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Introduction 

Galactomannans are polysaccharides made of 

galactose and mannose in a structure with a backbone 

of (1->4)-linked β-D-mannopyranosyl units with side 

chains of (1->6)-linked α-D-galactopyranosyl units. 

They form viscous solutions in aqueous media (gels), 

thus having been extensively used in food industry 

mainly as thickeners and stabilizers.  Galactomannans 

naturally occur in various plant seeds (mostly from 

leguminosae family), although they may occur in 

fungal species as well (Srivastava & Kapoor, 2005). 

Among galactomannan producing species, guar gum 

(from Cyamopsis tetragonoloba) and locust bean gum 

(from Ceratonia siliqua, also called carob) are 

particularly important due to their economical 

relevance (Prado et al., 2005; Dakia et al., 2008). 

Although galactomannans may have varying 

physicochemical properties depending on the 

galactose: mannose ratio, they are in general regarded 

as safe due to nontoxicity, biodegradability, and 

biocompatibility (Sharma, Kumar, & Sharma, 2020).  

Guar gum and locust bean gum are often adulterated 

with cellulose gums like xanthan gum and 

carboxymethyl cellulose (CMC) in the food industry, 

which are generally cheaper thickeners and stabilizers 

(Prado et al., 2005). However, this adulteration can 

cause problems. Blends of these gums were found to 

have varying effects on the flow properties of 

emulsions, with interactions between the different 

polysaccharides affecting stability (Nor Hayati, Wai 

Ching, & Rozaini,  2016). Furthermore, molecular 

interactions between xanthan gums and 

galactomannans like guar gum can complicate 

characterization of such mixtures (Schreiber et al., 

2020). Therefore, adulteration of galactomannans with 

other gums may introduce uncertainties regarding 

functionality and complicate quality control, posing a 

potential problem for the food industry (Flurer, 2000). 

Various analytical methods have been used to detect 

adulteration in galactomannans. Some of them are 

specific for determining galactomannans/ cellulose 

gels/ mixed systems’ properties, like the one 

developed by Fernandes, where periodate oxidation is 

used (Fernandes, 1994). And some others are based in 

widely used techniques such as infrared spectroscopy 

(Prado et al., 2005). In general, mid-infrared 

spectroscopy (IR) is a rapid and simple technique 

which has been shown to be a valuable tool for 

determining adulteration and authenticity of various 

foods, including galactomannans. Mendes and Duarte 

identified intense absorption bands in the region 

between 950 and 700 cm-1 which were able to correlate 

to the presence of adulterants such as starch, different 

to the polysaccharides which normally exist in coffee, 

where galactomanans are included (Mendes & Duarte, 

2021). Prado et al. used Fourier Transform Infrared 

Spectroscopy (FTIR) to differentiate among different 

type of carbohydrate gums and mixtures, including 

galactomannans (Prado et al., 2005).  

In Fourier Transform Infrared Spectroscopy (FTIR), 

molecules absorb infrared radiation due to changes in 

the dipole moment of chemical bonds, thus the 

wavelengths of the absorbed light will depend on the 

structure of their functional groups; in this manner, 

individual bands may be linked to specific functional 

groups. Therefore, structural information from the 

molecules is gathered and displayed in the infrared 

spectrum of a compound or mixture of compounds. An 

important advantage of FTIR, especially when coupled 

to Attenuated Total Reflection (ATR), is that many 

different compounds may be analyzed including 

liquids, powders, polymers, or semisolids. Besides, 
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those analyses are performed rapidly, with a minimum 

sample preparation, and without the need for solvent 

or previous extraction mechanisms (Smith, 2018; 

Tiernan, Byrne, & Kazarian, 2020). 

However, food is a very complex matrix that contains a 

high number of components which give rise to a 

multitude of spectral information and large data sets. 

Consequently, fast statistic and mathematical analyses 

are needed to fully understand all the complexity of data, 

as well as to be able to draw useful information from it 

(Roberts & Cozzolino, 2016). Therefore, chemometrics, 

which may be defined as ʻthe chemical discipline that 

uses mathematical and statistical methods, (a) to design 

or select optimal measurement procedures and 

experiments, and (b) to provide maximum chemical 

information by analyzing chemical dataʼ is an invaluable 

tool that allows for gathering information which is not 

normally visible in a group of spectra of different 

compounds, where contribution from many different 

functional groups from many compounds may cause 

overlapping to occur (Otto, 2016).  

Infrared spectra are obtained after sampling radiation 

absorption through wavelengths that correspond to the 

mid-infrared section of the electromagnetic spectrum 

(4000-400 cm-1 approximately). Consequently, there are 

several variables because each sampled wavelength 

constitutes one. Accordingly, in a spectrum with 2300 

wavelengths, there are 2300 variables. For optimizing a 

chemometric model for IR spectra, variable selection is 

important for reducing dimensionality and complexity, 

thus improving model performance and interpretability. 

Some wavelength regions may contain mostly noise with 

little chemical information, hence removing these regions 

improves the signal-to-noise ratio. By selecting 

characteristic wavelengths or wavelength intervals, the 

interpretability of the model can be strengthened. 

Moreover, the wavelengths selected provide insight into 

the molecular or atomic transitions that are most influential 

for a given analytical problem. This may aid in chemical 

interpretation (Yun, 2022). Advantages of reducing 

dimensionality include reduced risk of overfitting, better 

model interpretability, and reduced computational cost and 

time (Lee, Liong, & Jemain, 2018). 

A supervised algorithm in chemometrics is a 

classification or regression method that learns from 

example inputs in a training dataset that contain labels in 

order to predict the target labels of new unseen instances. 

Common supervised algorithms include partial least 

squares regression (PLS) and linear discriminant analysis 

(LDA), which have been used extensively in quantitative 

and qualitative analysis of spectroscopic and 

chromatographic data. In contrast, an unsupervised 

algorithm in chemometrics is an exploratory technique 

that groups or segments a dataset without using labels in 

order to discover hidden patterns in the data. Examples of 

unsupervised algorithms are principal component 

analysis (PCA), cluster analysis, and self-organizing 

maps (SOM), which have found applications in areas 

such as process monitoring and fingerprinting to detect 

outliers or identify new classes. Unsupervised algorithms 

are generally used for pattern recognition and dimension 

reduction without prior knowledge of the desired outputs 

(Wold, Sjöström, & Eriksson, 2001; Geladi, 2003).  

PCA is a non-supervised algorithm which may be used 

to reduce the dimensionality of large data sets by 

transforming a number of correlated variables into a 

smaller number of uncorrelated variables called 

principal components. The first principal component 

accounts for as much of the variability in the data as 

possible, and each succeeding component accounts for 

as much of the remaining variability as possible. 

Loadings represent the correlation between each 

original variable and the components and can be used 

to interpret the underlying structure of the 

components. The loadings identify which original 

variables contribute most strongly to each component. 

Variables with high loadings, either positive or 

negative, on a component are the ones most 

represented by that component. Therefore, the 

loadings aid in dimensionality reduction in PCA by 

identifying which original variables have the strongest 

influence on the principal components and which 

variables can potentially be excluded from further 

analysis without much loss of information (Abdi & 

Williams, 2010; Jolliffe & Cadima, 2016). 

Our goal in this work is to show how to optimize 

conditions for instrumental analysis by infrared 

spectroscopy of galactomannans and its constituent 

monomers and create a chemometric model where 

galactomannans could be differentiated as a single group. 

Although papers previously published have reported 

algorithms for discriminating between different types of 

galactomannans after FTIR-chemometric analyses 

(Prado et al., 2005), we are aiming to develop a quick and 

simple method for discerning galactomannans as a group, 

while using their individual monomers, mannose and 

galactose, as reference materials for establishing the 

model. We also wanted to use an unsupervised algorithm 

for doing so, to eliminate the requirement of preassigning 

classifications to specific categories during data 

processing. Optimization of the model was done through 

dimensionality reduction following purely chemometric 

criteria such as loadings associated to wavelengths. We 

do not claim that this work would be a stand-alone test 

but rather a supportive material for helping in the 

development of a tool for a quick identification of 

adulterants in galactomannans used as food additives.  

 

Materials and Methods 

Materials: 8 samples of guar gum (from Cyamopsis 

tetragonoloba) (identified in this work as GUA) and 7 

samples of carob -locust bean gum- (from Ceratonia 

siliqua) (identified in this work as ALG -for ʻalgarroboʼ, 

carob in Spanish-) were purchased from local producers. 

Mannose (MAN) and galactose (GAL) standards were 

sourced from Sigma-Aldrich (USA).  

Equipment: Agilent Cary 660 Fourier Transform 

Infrared Spectrophotometer (Agilent, USA) equipped 
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with a Pike Technologies germanium crystal ATR 

(Pike Technologies, USA). 

Software: Resolutions Pro (Agilent, USA), 

Spectragryph (Friedrich Menges Software-

Entwicklung, Germany), MS Excel from Microsoft 

365 (Microsoft, USA), Pirouette (Infometrix, USA) 

and JMP Pro (SAS Institute, USA).  

Methods: Both guar gum and carob are powders thus 

the process for instrumental analysis had to be 

optimized. Since ATR works by sending an evanescent 

wave into the sample, only that infinitesimal part of the 

sample that comes into contact with the crystal, 

specifically within the distance where the evanescent 

wave penetrates into the sample, will actually provide 

information regarding absorption of infrared light by the 

different functional groups found there.  Hence, in the 

infrared spectrum will only be information of that part 

of the sample, whose specific depth will depend on the 

crystal of the ATR (because evanescent waves depend 

on the type of crystal) (Smith, 2018; Tiernan, Byrne,  & 

Kazarian, 2020). Beyond it, any additional sample will 

be neglected, therefore, a specific weight of sample is 

not the appropriate way for guaranteeing a proper data 

acquisition during instrumental analysis.  

It is important to guarantee that the part of sample in 

contact with the evanescent wave is optimized. Thus, 

before analysis, several parameters were optimized. 

Since samples are solid powders, different laboratory 

spoons were used for optimizing sample size. The use 

of the included clamp accessory of the ATR was 

evaluated, and finally, the amount of time after placing 

the sample in the crystal was also considered (since 

samples may be hygroscopic). Also, cleaning 

protocols were assessed. 

Our final conditions were, regarding the amount of 

sample, to take about 20 mg of sample (or standard), 

place them on top of the ATR crystal, and then, using 

a cardboard aid (not a metallic spatula to prevent 

damaging the crystal), accommodate it while ensuring 

that no part of it remain uncovered. We realized that, 

considering the hygroscopicity of some of the samples, 

the time elapsed since their placement in the crystal 

and the time when the readings were performed could 

bring some changes in the spectra. We also realized 

that pressing the sample with the clamp accessory of 

the ATR improved the consistency of obtained spectra. 

Therefore, we concluded that readings should be taken 

immediately after securing the swivel pressure tower 

of the clamp accessory. Additional conditions included 

the removal of dust and cleaning of both the crystal 

and plate of the ATR with isopropyl alcohol, while 

allowing one minute afterwards in order to allow for 

alcohol evaporation, and to take background reading 

between samples. Each sample was read 32 times 

(32 scans) from 750 to 3700 cm-1 and a wavenumber 

distance of 4 cm-1 and resulting spectra provided the 

data to be used for the assembly of the sample matrices 

to be processed by the chemometric algorithms that 

followed.  

Results and Discussion 

In this work, we performed ATR-FTIR analyses of 

several samples of two different types of 

galactomannans, locust beam gum (carob) and guar 

gum, as well as of their constituents, monosaccharides 

mannose and galactose (8 times each). Spectra of all 

the analyzed samples and standards are displayed in 

‘Figure 1ʼ.  It is worth noting that color coding in the 

Figure 1 were used for all spectra of the corresponding 

type of either sample or standard, thus within MAN 

there are spectra of 8 analyses, as well as in the case of 

GAL and GUA. In ALG, spectra are of 7 analyses.  

 

 
Figure 1. Raw infrared spectra of all the samples 

analyzed in this work (in absorbance). 

 

Since we analyzed both galactomannans and galactose 

and mannose standards, one conceivable approach to the 

identification of galactomannans from possible 

adulterants was to focus on absorption bands present in 

both samples and standards. However, infrared spectra 

may have contributions from many sources including 

fundamental bands, overtones, and possible presence of 

groups with overlapping absorption bands; therefore, 

simple interpretation of infrared spectra from complex 

mixtures may become difficult, as depicted in ‘Figure 1ʼ. 

Therefore, we decided to conduct chemometric analyses 

to differentiate and analyze the data effectively. By 

utilizing these analytical techniques, we can uncover 

meaningful insights and obtain useful information.  

Raw spectra contained 2309 wavelengths (thus 

variables). Although explored, no spectra pre-

processing (such as Savitsky−Golay smoothing, first 

or second derivative, normalization, or rubber band 

correction) other that background subtraction was 

performed on the spectra. Therefore, raw absorbance 

data was the information considered for chemometrics 

in this study. After assembling the data matrix, 

dimensions were reduced considering not functional 

groups nor regions but merely chemometric criteria, in 

this case loadings. 

As explained in introduction, supervised algorithms 

require pre-assignment to a given category. If we are 

developing a method aiming for a further detection of 

adulterants, we do not want to bias the model by 

assigning any beforehand label. For this reason, an 
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unsupervised algorithm was used to determine 

dispersion, in this case, Principal Component Analysis 

(PCA). ‘Figure 2ʼ shows the 2D PCA of the complete 

spectra, with all the wavelengths (a total of 2309) 

obtained by analysis in the ATR-FTIR equipment. 
 

 
 

Figure 2. PCA of raw infrared spectra of all analyzed 

samples and standards (2309 variables). 
 

Although clear groupings between the samples are 

noticeable at first glance, there is also a certain dispersion 

among the different repetitions in both standards, 

especially in the case of MAN. This dispersion could be 

related to moisture absorption, as during the optimization 

process, visible changes in the spectra were observed over 

time after being placed onto the ATR platform. However, 

this dispersion only affected some wavelengths, which is 

why dimension reduction was sought to decrease the 

dispersion among the different repetitions of both 

standards (and thus eliminate possible interferences from 

elements not part of the standards). Besides, GUA and 

ALG, although very close together, still may be 

distinguished as two different groups. 
 

 
Figure 3. Loadings of PCA of raw infrared spectra of 

all analyzed samples and standards (2309 variables). 

For improving the model, the analysis of the ̒ loadingsʼ 

was carried out. Loadings reflect the contribution that 

each specific variable (in this case, each wavelength) 

makes to the systemʼs dispersion, as manifested in the 

absolute value they have for each principal 

component. The higher this value, meaning further 

from zero, the greater the contribution of that variable 

to the system's dispersion. In ‘Figure 3ʼ, the graphical 

representation of all the loadings in the PCA model 

depicted in ‘Figure 2ʼ is displayed. The 2309 variables 

are included in ‘Figure 3ʼ. Those farther away from the 

center account for the higher dispersion, while those in 

the very center bring the least contribution to 

dispersion. Thus, the first step to dimension reduction 

involves identifying and gradually removing variables 

with the lowest contributions according to the 

loadings. ‘Figure 4ʼ is the graphic representation of 

loadings after said modification.  
 

 
 

Figure 4. Loadings of PCA of raw infrared spectra of all 

analyzed samples and standards after removing 

wavelengths with minimum contribution to dispersion. 
 

For further optimization of the model, we used 

supervised algorithms such as K-Nearest Neighbor 

(KNN), Soft independent modelling of class analogies 

(SIMCA), Alternate least squares (ALS), and Partial 

least squares – Discriminant analysis (PLS-DA) in order 

to identify those wavelengths that account for maximum 

separation into categories. However, it is important to 

note that supervised algorithms were used not as the 

final model but as an aid for wavelength selection for 

improving the PCA model. In ‘Figure 5ʼ, the KNN of 

the spectra is analyzed.  

 
 

Figure 5. KNN of raw infrared spectra of all analyzed 

samples and standards. 
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Ultimately, a new matrix remains where separation 

between members of the same set will be minimized, 

while separation between different sets will be 

maximized. ‘Figure 6ʼ represents the PCA created 

with this matrix, now with only 888 variables. 
 

 
Figure 6. PCA of dimensionality-reduced infrared spectra 

of all analyzed samples and standards (888 variables). 
 

Comparing ‘Figure 2ʼ with ‘Figure 6ʼ, it is noticeable 

how the groups of both MAN and GAL ʻcompressedʼ 

after the variable reduction by ʻdistillationʼ of 

loadings. Likewise, the groups of both GUA and ALG 

also compressed and even overlapped, thus now 

constituting a single set, as originally intended.  

 

Conclusions  

1. ATR-FTIR followed by chemometrics is an 

excellent technique for analyzing galactomannans 

that are used as stabilizers and thickeners in the 

food industry. 

2. Without chemometrics, useful information which 

may be obtained from infrared spectra of samples 

is limited.  

3. An unsupervised chemometric model, PCA, was 

successfully optimized through reducing 

dimensions by loadings selection.  
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