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Abstract 
This study investigates the distribution and carbon content of organic soils in Latvia, leveraging machine learning techniques 
alongside remote sensing and National Forest Inventory (NFI) data to enhance the precision of organic soil mapping. Our 

approach integrates data from various sources, including airborne laser scanning (ALS) data, digital elevation models (DEM), 
depth-to-water (DTW) and wet area maps (WAM), and historical organic soil data. By classifying over 24,000 soil probing 

measurements across Latvia into distinct peat layer thickness categories, we develop a machine learning model that categorizes 
the thickness of the organic layer with notable accuracy. Our findings indicate that the model, particularly when employing the 
xgbTREE algorithm and over-sampling method, successfully identifies areas with peat layers thicker than 40 cm, demonstrating 

a significant improvement over traditional mapping methods. The study reveals an underestimation of organic soil coverage in 
Latvia by previous estimates, suggesting a broader distribution than recognized, with the model achieving an accuracy of 0.86 
and a kappa value of 0.67. This research not only underscores the efficacy of integrating machine learning and remote sensing 

for soil mapping but also highlights the critical role of accurate data and models in determining organic soil distribution. The 
insights gained from this study are vital for policy-making and environmental planning, offering a more detailed understanding 

of Latviaʼs peatland resources and their conservation needs. 
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Introduction 

Peatlands provide essential services such as storing 

carbon, producing biomass, and regulating climate. 

However, they are being degraded by climate change 

and swift changes in land use, releasing their carbon 

(C) reserves (Joosten et al., 2016; Minasny et al., 

2019). Understanding their size, condition, and carbon 

stocks is crucial for their conservation and to support 

the goals of the Paris Agreement. Despite covering just 

about 2.8% of the global land area, peatlands play a 

critical role in carbon storage, holding between 33% to 

50% of the worldʼs soil carbon reserves (Hilbert, 

Roulet, & Moore, 2000; Frolking et al., 2011; Li et al., 

2018). 

Organic soils are defined by their buildup of organic 

material based on their organic content, degree of 

decomposition, and water saturation levels. Within 

histosols, further distinctions are made, such as fibric, 

which consists of less decomposed peat; hemic, with 

partially decomposed organic material; and sapric, 

representing highly decomposed peat. These 

classifications help in understanding the 

characteristics and ecological functions of organic 

soils across different environments. 

The landscapeʼs topography and the bedrock beneath 

play a crucial role in creating moist conditions. The 

shape of the land affects water runoff, the connectivity 

of water networks, and the pooling of water, as noted 

by Jencso et al. (2009). The climate has a significant 

effect on the moisture content of the soil, with rainfall 

influencing the levels of groundwater, surface runoff, 

reduction reactions, and the buildup of organic 

materials. The temperature influences the activities of 

microorganisms and plants, which in turn affects the 

accumulation and breakdown of organic materials 

(Deluca & Boisvenue, 2012). It is also a factor in the 

rate of evaporation and the overall moisture regime of 

wetlands. In the boreal forests, the commonality of 

moist soil is attributed to elevated groundwater levels. 

These moist conditions, along with lower 

temperatures, retard the decomposition of organic 

materials, favoring the formation of peat (Luke et al., 

2007). Peat, with its superior capacity to retain water 

compared to mineral soils, enhances moisture 

retention in specific locales (Åström, Aaltonen, & 

Koivusaari, 2001). Wet soils are not merely 

repositories of moisture but also hubs for organic 

material. Observations indicate that areas prone to 

runoff and associated with wet soils exhibit similar 

concentrations of organic carbon compounds. This 

freshly derived organic carbon highlights the interplay 

between watercourses and soil. The transference of 

organic matter from moist soils mirrors in the flux of 

elements such as organic nitrogen, phosphorus, and 

sulfur, similar to the release of organic carbon 

(Ledesma et al., 2018). 

Digital Elevation Models (DEMs) are instrumental in 

examining natural processes related to the landscape, 

and thematic maps provide further insights into their 

effects across different regions. Depth-to-Water 

(DTW) maps offer a model of groundwater proximity 

to surface water features like rivers and lakes (Lidberg, 

Nilsson, & Ågren, 2020), whereas maps of soil 

wetness reflect the influence of the underlying bedrock 

(Ivanovs & Lupikis, 2018). This study aims to identify 

the distribution of organic soils and its carbon content 

by comparing historical soil maps with predictions 

using remote sensing data. 

 

Materials and Methods 

The research area covers the entire territory of Latvia. 

According to historical soil maps, mire distribution 

data, forest growth condition data, peat extraction 

license data and other data sources, organic soils in 

Latvia cover an area of 6958 million square kilometers 

or 10.78% of land area ‘Figure 1ʼ. This estimation is 
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based on the data on the organic soil coverage derived 

from the results of the Paliduculture in the Baltics 

project (Piirimäe et al., 2020).  

 

 
Figure 1. Distribution of organic soils in Latvia. 

 

Data were collected from NFI sample plots located in 

forested areas, where the depth of the peat layer was 

assessed through soil probing. In each plot, this 

probing was conducted four times in each cardinal 

direction (North, East, South, and West), 12.5 meters 

away from the plot's center, resulting in a total of over 

24,000 measurements. Subsequently, these 

measurements were categorized into three classes that 

represent four peat layer thickness ranges: plots with 

either no peat layer or one up to 5 cm thick, plots with 

peat layers up to 20 cm thick, plots where the peat 

layerʼs thickness is between 20 and 40 cm, and plots 

with peat layer thickness exceeding 40 cm. 

The training dataset comprises a variety of variables 

sourced from ALS (Airborne Laser Scanning) data and 

additional cartographic materials, all at a 5 m 

horizontal resolution. The variables incorporated into 

the machine learning model include: 

 DEM (Digital Elevation Model): A terrain model 

derived from ALS data, provided by the Latvian 

Geospatial Information Agency. 

 Historical Organic Soil Data: A data layer 

generated by amalgamating historical soil maps, 

mire distribution data, data on forest growth 

conditions, peat extraction license information, and 

other data sources. 

 DTW (Depth to Water): Maps indicating water 

depth with catchment areas of 10 and 30 hectares, 

created earlier in the research using ALS data. 

 WAM (Wet Area Maps): Maps identifying wet 

areas, also prepared in prior research stages from 

ALS data. 

 Normalized Height Maps: Models normalizing the 

Earthʼs surface relief. 

 Slope: Models depicting the slope of the Earthʼs 

surface. 

 Saga Wetness Index: A moisture index based on a 

modified calculation of the catchment area, as 

discussed by Böhner & Selige (2006). 

 Soil Data: Data concerning soil texture. 

 Proximity to Water: The distance to the nearest 

body of water, such as a river, lake, or sea. 

 Continentality: The distance from the sea. 

 X and Y Coordinates: Geographical positioning data. 

The categorization of the organic layerʼs thickness was 

executed using the ‘Caretʼ package in R. The NFI 

dataset, divided into three categories of peat thickness, 

was randomly split into 80% for training and 20% for 

testing. Various machine learning classification 

algorithms, including xgbDART, xgbTREE, among 

others, were evaluated. To mitigate the influence of an 

imbalanced dataset, different strategies were explored-

over-sampling, under-sampling, and the SMOTE 

algorithm. All models underwent parameterization and 

optimization through a grid-search methodology 

coupled with 5-fold cross-validation to identify the 

optimal model. These fine-tuned models were then 

applied to the test data and assessed using Cohenʼs 

kappa index to measure agreement. 

 

Results and Discussion 

The machine learning model employing the xgbTREE 

algorithm, in conjunction with the over-sampling 

method, yielded the best classification outcomes and 

the highest kappa value. ‘Figure 2ʼ illustrates the 

influence of different remote sensing data and 

cartographic materials on the classification results. 

The most critical parameter was found to be 

continentality, followed by the depth-to-water index 

and DEM (Digital Elevation Model) values. 

 

 
Figure 2. Feature importance in the model. 

 

The accuracy of the overall machine learning 

classification algorithm reaches 0.86, while the kappa 

value is 0.67. Separately, by different classes, 

sensitivity reaches: 

Soils without peat layer or up to 5 cm – 0.96; 

Soils with a layer of peat from 5 to 20 cm – 0.45; 

Soils with a layer of peat thickness 20-40 cm – 0.39; 

Soils with a peat layer > 40 cm – 0.8.  

‘Figure 3ʼ presents the classification outcomes for 

Latviaʼs landscape. 
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Figure 3. Map of modelled peat layer thickness in Latvia. 

 

The data reveal that areas with a peat layer thickness 

ranging from 5 to 20 cm account for 0.7 % (461 km²) 

of Latviaʼs land, while 1.7% (1120 km²) of the country 

is overlain by peat layers between 20 and 40 cm thick. 

Additionally, a substantial 16.8% (10858 km²) is 

characterized by peat layers exceeding 40 cm in 

thickness. These findings mark a deviation from the 

previously estimated coverage of organic soils in 

Latvia, which stood at 10.8%. This discrepancy is 

likely due to variations in the precision of organic soil 

mapping and the spatial resolution of the areas 

analysed. An evaluation of the existing organic soil 

distribution maps against the newly acquired NFI plot 

data reveals an accuracy rate of 0.76 and a kappa 

statistic of 0.39. This comparison underlines the 

significant enhancement in accuracy and insight into 

the distribution of organic soils across Latvia 

facilitated by the applied machine learning algorithm. 

Peatland mapping techniques vary according to 

peatland accessibility and the resources at hand. In the 

EU, nations such as Finland and Sweden utilize their 

robust data infrastructures to generate accurate peat 

maps via country-wide gamma radiometric surveys, 

which allow for the distinction between shallow and 

deep peat layers (Lilja & Nevalainen, 2006, Väänänen 

et al., 2007). 

Canada has successfully utilized remote sensing and 

DSM for extensive territory mapping. Recently, 

employing a variety of remote sensing methods has 

proven exceptionally effective for generating high-

resolution outcomes in targeted, regional research 

efforts. For example, Hird et al. (2017) achieved the 

mapping of Albertaʼs peatlands by combining 

multispectral satellite data, digital elevation models 

(DEM), and synthetic aperture radar (SAR) imagery, 

with additional data from forest inventory plots. In a 

similar manner, Bourgeau-Chavez et al. (2017) 

utilized a technique for their research in regions rich in 

permafrost. Additionally, the application of airborne 

LiDAR has been acknowledged for its precision in 

mapping peatlands at a high level of detail, as 

demonstrated by research conducted by Millard & 

Richardson (2013) and Chasmer et al. (2016), even 

though its use is somewhat restricted. While Indonesia 

has tested digital soil mapping, it has not yet been 

implemented nationwide. To support effective spatial 

planning and policy formulation, it is necessary to 

have a peat map of at least 1:50,000 resolution or a 

spatial accuracy of 30 meters or better. Various 

research efforts have distinguished peatlands using 

satellite imagery (including visible and infrared 

wavelengths) (Wijedasa et al., 2012), as well as radar 

data (Novresiandi & Nagasawa, 2017). Some 

researchers have attempted to determine peat depth 

using only elevation data (Jaenicke et al., 2008). 

However, only a handful of studies have employed 

digital mapping methods to assess peat thickness. The 

peatlands in these regions are typically dispersed and 

difficult to access, suggesting that mapping strategies 

should combine remote sensing technology with direct 

field observations. 

Accurately determining peat layer thickness at a 

granular scale presents challenges due to the complex 

and often unknown nature of the underlying mineral 

terrain (Kettridge et al., 2008). However, identifying 

regions where landforms suggest sustained high 
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moisture levels enables the identification of zones with 

significant long-term peat accumulation, leading to 

denser peat layers (Comas, Slater, & Reeve, 2004). 

Our study included several LiDAR derived soil 

moisture indicators, like WAM and DTW maps, to 

train our machine learning model. These indicators are 

crucial in the feature importance hierarchy of the 

machine learning modelʼs development (Lidberg, 

Nillson, & Ägren, 2020, Deluca & Boisvenue, 2012). 

It should be noted that the quality of the DEM has a 

significant impact on the accuracy of the used models, 

how well it is prepared for hydrological modelling. For 

example, from whether correct input data for existing 

roads, ditches, culverts, which correspond to DEM 

have been available, to make its corrections in these 

places.  

 

Conclusions  

1. Our model using machine learning techniques, 

remote sensing and NFI data provides high 

accuracy of peat layers with different thicknesses 

spatial distribution, comparing to other available 

data sources.  

2. Most important model input data variables was 

continentality, depth to water map and DEM.  

However, it should be noted that the accuracy of 

our model is affected by the accuracy of input data 

and models, such as depth to water and wet area 

map and other terrain indices. 

3. The results reveal that best model performance is 

obtained for identifying peat which is thicker than 

40 cm. 

4. More research is needed which may improve the 

model performance regarding different peat 

thicknesses as well as considering usage of 

different satellite data products for training the 

model. 

5. Our study provides more insight into organic soil 

distribution in Latvia, comparing to older data 

sources which can be taken into account by GHG 

inventory teams and policy makers. 
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