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Abstract 
This paper provides an overview of recent progress reached in semi transparent photovoltaic systems (STPV), which are being 

assessed as a potential solution to enhance the productivity of plant grown in greenhouses. Utilizing this kind of renewable 

energy resources, relating with plant growing is attractive solution to increase sustainability for citizens. The aim of this study 

is to find out recent advances for application of various semi transparent photovoltaic systems which can be integrated in 

greenhouses. Solar PVs are among dependable, mature and cost-effective renewable energy systems and solutions, which are 

promising for building integrated photovoltaics (BIPV) application. The main emerging photovoltaic candidates for BIPV are 

amorphous silicon, kesterite, chalcopyrite, CdTe, dye-sensitized, organic and perovskite based systems. A monographic study 

approach has been utilized in this investigation, in ordain to compile and analyse the photovoltaic systems for BIPV mainly 

investigating and comparing two main parameters: average visible transmittance (AVT) and power conversion efficiency 

(PCE). The rapid development of new materials and structures for the manufacture of semi transparent solar panels allows a 

balance to be struck between AVT, PCE and a comparison of the reviewed materials indicates that organic and perovskite are 

the most promising for semi-transparent solar panel production and application in greenhouse constructions, based on their 

PCE and AVT results. 

Key words: solar cell, building integrated photovoltaics, average visible transmittance, power conversion efficiency, semi 

transparent. 

 

Introduction 

An attractive way to make efficient use of agricultural 

land and provide additional energy for crop production 

is to integrate photovoltaics into modern agriculture 

(Zhao et al., 2021). Greenhouses are commonly 

constructed in open areas with high sunlight coverage, 

as sunlight is essential for plant photosynthesis. For this 

reason, such sites are always appropriate to produce PV 

(photovoltaic) power (Yano & Cossu, 2019).  

The structure of a greenhouse is usually made of 

plastic, glass or fibreglass. This allows sunlight to 

enter the greenhouse and photosynthesize the plants. 

However, a key aspect is the use of electricity to power 

the greenhouse, i.e., the cooling, ventilation and 

irrigation systems in various climatic situations. 

Therefore, it is preferable to use a PV system to meet 

the power needs in greenhouses and provide a 

comfortable environment in the greenhouse, rather 

than consuming fossil fuels and exterior energy 

supplies to sustain this system (Lu et al., 2022). 

Solar PV is one of the dependable, mature and cost-

effective renewable energy systems and solutions. The 

International Renewable Energy Agency (IRENA) has 

forecast the worldwide installed capacity of PV by 

2050 and found that PV could potentially contribute 

4.9 gigatonnes (Gt) of emission (CO2) reductions in 

2050. In Europe, installed PV power is expected to 

increase significantly to around 891 gigawatts (GW) 

by 2050 (International Renewable Energy Agency, 

2019). The use of PV is also in line with opportunities 

for an urban energy transition in the city, as shown by 

a study on emission targets in the city of Riga. The 

transition to renewable energy sources will necessitate 

substantial material modifications at the household 

level, including the installation of PV or smart meters. 

Therefore, it is essential to comprehend individual and 

alliance values to prioritize low-carbon alternatives by 

citizens. This is a crucial aspect of urban energy 

strategies (Oliveira et al., 2022).  
The aim of this study is to find out recent advances for 

application of various semi transparent photovoltaic 

systems which can be integrated in greenhouses. To 

achieve the aim in the study, a monographic study 

approach was used in order to compile and analyse the 

photovoltaic systems for BIPV mainly investigating 

and comparing two main parameters: average visible 

transmittance (AVT) and power conversion efficiency 

(PCE). 

 

Materials and Methods 

The research employed a monographic study approach 

to compile and analyse photovoltaic systems for BIVP 

mainly investigating and comparing two main 

parameters: average visible transmittance and power 

conversion efficiency. This study summarises scientific 

literature from different publications and authors. Only 

articles from scientific journals extradited from 2004 

were utilized, while more recent papers were preferred. 

To select and analyse 38 full text research articles and 

monographs Scopus, Web of Science, MDPI Science 

Direct and Google scholar research databases were 

used. The following keywords were used in the 

selection of scientific literature: amorphous silicon, 

kesterite, chalcopyrite, CdTe, dye-sensitized, organic 

and perovskite, semi transparent. For this review, 

multiple articles were analysed, and those that 

conducted research in a similar manner were selected. 

 

Results and Discussion 

The majority of agricultural industry is powered by 

non-renewable energy sources, such as fossil fuels, 

which are known to be greenhouse gas emitters that 

contribute to climate change and global warming. 

Growing concerns about the environmental impact of 
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these non – renewable fuels tend to be alleviated by 

more sustainable resources (Bolyssov et al., 2019).  

Solar systems for building installation can be classified 

as Building-Added (BA) and Building-Integrated (BI) 

(e.g. facade-integrated systems, roof-integrated 

systems, etc.) (Lamnatou & Chemisana, 2017). The 

literature on greenhouse construction indicates a 

recent increase in interest in rooftop/BI greenhouses 

over the past five years. This includes rooftop/BI 

greenhouses with semi transparent PV cells that allow 

a certain percentage of solar radiation to pass through 

(Moreno et al., 2023). 

The co-cultivation of crops and photovoltaic energy 

production on the same space is referred to as 

‘agrivoltaicsʼ. The term ‘agriʼ pertains to the science 

and technology of crop cultivation, while ‘voltaicʼ 

refers to photovoltaic energy (Gorjian et al., 2022). In 

addition, rooftop greenhouses have the potential to 

create new agricultural areas in urban areas, using 

rooftops that would otherwise be unproductive. To 

optimise the energy needs of the buildings and 

greenhouses, this solution uses a building energy 

management system (Choi et al., 2018). 

While crystalline silicon (c-Si)-based units dominate the 

building integrated PV (BIPV) market, the opaque 

characteristics of silicon compose a significant potential for 

the introduction of new PV technologies that can achieve 

true semi transparency. These include: amorphous silicon, 

kesterite, chalcopyrite, CdTe, dye-sensitized, organic and 

perovskite based systems ‘Figure 1ʼ. 

 

 
Figure 1. Classification of semi transparent solar cells 

for BIPV (Sun & Jasieniak, 2017). 

 

Transparency is a crucial factor for BIPV applications. 

To reflect the sensitivity of the eye to different 

wavelengths, a parameter named average visible 

transmittance (AVT) has been implemented. It is 

computed as the average spectral transmission of 

visible light weighted by the photopic response of the 

human eye (1): 
 

𝐴𝑉𝑇 =
∫ 𝑇(𝜆)𝑃(𝜆)𝑆(𝜆)𝑑(𝜆)

∫ 𝑃(𝜆)𝑆(𝜆)𝑑(𝜆)
 (1) 

 

In the calculation (Eq.1) of the AVT uses the ratio of the 

transmission (T(λ)), the solar photon flux (S(λ)), and the 

photopic response (P(λ)) (de Bruin & van Sark, 2022). 

The power conversion efficiency (PCE) is another 

important manufacturing parameter. As shown in 

Equation 2, the PCE is the proportion among the 

electrical power produced by the side-mounted PV cell 

and the incident power: 
 

𝑃𝐶𝐸 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
= |

𝐽𝑚𝑝𝑝𝑉𝑚𝑝𝑝

𝑃𝐴𝛭1.5𝐺
| (2) 

 

where  Jmpp – the current density at the maximum 

power point (MPP) of the cell;  

Vmpp – the voltage at the MPP; 

PAM1.5G – the power of the incident AM1.5G spectrum 

(1000 W⸱m-2 under standard test conditions (STC)) (de 

Bruin & van Sark, 2022). 

 

Amorphous silicon 

Amorphous silicon PV cells have an absorption 

coefficient that is one level higher than that of c-Si. 

Therefore, it is possible to reduce the thickness to the 

sub-micrometer range. For comparison, silicon solar 

cells typically have thicknesses in the range of hundred 

micrometers. This allows for tuning the required 

transparency. Hydrogen passivation is a critical step 

(in a-Si:H, where H stands for hydrogenation). The 

amount of hydrogen can also control the band gap. The 

higher band gap of 1.9-2.0 eV leads to higher visible 

transparency at the expense of lower short-circuit 

currents (Kumar et al., 2023). 

The use of germanium in the formation of amorphous 

silicon-germanium (a-Si0.8Ge0.2:H) has been 

investigated in a recent report (Lim et al., 2013). 

Such devices were conventionally grown from 

germane (GeH4) and silane (SiH4) in a partly 

hydrogenated conditions at 250 ℃ on a gallium-doped 

ZnO (ZnO:Ga) TCO. The p-i-n structure was used to 

fabricate the cells with ZnO: Ga serving as the top 

electrode. The appliance was fabricated with an active 

layer thickness of 150 nm to achieve transparency and 

demonstrated a PCE of 5.9% at an AVT of 17.9%. The 

comparison appliance lacking Ge achieved a PCE of 

5.5% while maintaining a high level of visible 

transparency at 21.6% (Sun & Jasieniak, 2017). 

Cadmium Telluride 

A well-studied material is cadmium telluride (CdTe). 

It is II-VI semiconductor material with an outright 

band gap of 1.5 eV for single crystal and 1.42 eV for 

polycrystalline form. CdTe has high performance 

optical and electrical characteristics (Table 1). Thin-

film modules, such as CdTe, have received 

considerable attention from the photovoltaic research 

community over the last two decades, consisting of 
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thin liner cells only a few micrometers thick. Small 

CdTe solar cells have improved dramatically in 

efficiency in recent years, from 16.5% to 22.1% 

(Wang et al., 2018) and the general module 

productiveness for semi transparent PV windows are 

estimated to be in the diapason of only 4.1%–12% 

(Sun et al., 2018). Additionally, in the wavelength 

range of 500 nm to 800 nm the average transmittance 

can be reached 14.21% (Xie et al., 2024). 

Table 1 

Properties of CdTe  

Semiconductor CdTe 

Crystal structure Cubic 

Band gap 1.42 eV 

Lattice constant 6.482 Å 

Electron affinity 4.28 eV 

Absorption coefficient 104 cm-1 

Refractive index 2.76 

Density 5.85 g⸱cm-3 

Melting point 1092 ℃ 

Boiling point 1130 ℃ 

Young’s modulus 3.7×1011 dyne⸱cm-2 

Work function 5.7 eV 

Hole mobility 65 cm2⸱Vsv-1 

Electron mobility 700 cm2⸱Vs-1 
Source: Kapadnis et al., 2020. 
 

Kesterite 

A structural relative of chalcopyrite, kesterite 

Cu2ZnSn(S,Se)2 (CZTSSe) and Cu2ZnSnS2 (CZTS) 

have lately become viable competitors to 

Cu(In,Ga)Se2 (CIGS) absorbers due to their 

inexpensiveness, abundance on Earth and equally 

promising optoelectronic characteristics (Sun & 

Jasieniak, 2017). 

Presently, the highest PCE for opaque CZTS appliance is 

10.0%, with a short-circuit current density (Jsc) 21.74 mA 

cm-2, open-circuit voltage (Voc) 0.7306 V including fill 

factor (FF) of 69.3%, and for CZTSSe PCE is 13.6%, 

with a Jsc=36.18 mA cm-2, Voc=0.5375 V and FF of 

69.8% (Green et al., 2022). Due to their related lattice 

and energy transition structure to CIGS, kesterite-

based technologies offer the benefits of an elevated 

coefficient of absorption (above 104 cm-1), a variable 

band gap energy ranging from an intrinsic of 1.0 to 

1.5 eV, intrinsic p-type conductibility in a range 

appropriate for solar cells, and three-dimensional 

equality of carrier transport (He et al., 2021). 

While various technological applications are being 

investigated, there is currently no existing standard for 

kesterite technology although a standard exists for 

CIGS, which is the most similar material to kesterite. 

Furthermore, kesterite solar cells have been researched 

for many years, but only a few number of papers have 

presented stability values for this type of cell. 

(Larramona et al., 2020). The researchers found that 

there was little or no initial loss of efficiency under 

continuous indoor irradiation and in outdoor field tests 

(Larramona et al., 2020).  

Chalcopyrite 

A co-evaporation process was used in a single stage to 

produce semi-transparent thin-film solar cells with an 

ultra-thin Cu (In, Ga) Se2 (CIGS) absorber layers were 

deposited on glass substrates coated with fluorine-

doped tin oxide (Larramona et al., 2020). Cu(In, Ga)Se2 

(CIGS) based devices have gained significant interest 

for thin film photovoltaic utilizing owing to their high 

absorption coefficient, tunable band gap, compositional 

tolerance, excellent stability and high efficiency (Kim & 

Shafarman, 2016). This is due to their tunable band gap 

of around 1.0-1.12 eV and high absorption coefficient 

of up to 105 cm (Mufti et al., 2020). 

Quantitative performance characteristics with different 

CIGS absorber thicknesses illuminated from both the 

front side and backside at a light luminance of 100 mW 

cm-2 shown in Table 2. 

Table 2 

Characteristics of semi transparent solar cells with 

various CIGS absorber thicknesses  

Absorber 

thickness, nm 

Illumination 

direction 

PCE, 

% 

AVT, 

% 

200 Front 6.89 18.53 

200 Rear 4.91 - 

300 Front 8.37 10.92 

300 Rear 6.25 - 

400 Front 9.75 5.06 

400 Rear 6.46 - 

2000 Front 14.89 0 

2000 Rear 3.29 - 
Source: Shin et al., 2021. 

 

Dye-sensitized 

Transparent solar cells, such as DSSCs, have received 

significant focus due to the flexibility offered by optical 

transparency and colour. Its inherent qualities, such as 

excellent low light performance and minimal angle 

dependence, make it suitable for BIPV (Chung et al., 

2020). While the manufacturing of DSSCs has been 

simplified, there has been an improvement in their PCE 

from 7% to 14%. DSSCs offer consistent performance 

in a variety of lighting conditions, including fluorescent 

and LED, strengthening their position in a variety of 

electronics applications, including wireless sensor 

networks, smart buildings, smart homes and wearable 

devices (Prajapat et al., 2023). 

Among TPV (transparent photovoltaic) technologies, 

DSSC technology has one of the greatest transmittance 

amount of solar radiation (Pulli et al., 2020). Utilizing 

conventional red and orange dyes, the devices have 

been shown to achieve a solar transmittance of 20-

30%, although using a chosen dye system that takes up 

light in the ultraviolet and near-infrared range, an 

astonishing transmission rate of 60% has been 

demonstrated (Barichello et al., 2021). In recent solar 

cell efficiency tables, it can be found that PCE reaches 

8.8-12.25% (Green et al., 2022). 

Organic 

Fine organic particles or conductive organic polymers 

form the basis of organic solar cells (OSCs). Contingent 

on the power band gap of the light-absorbing element in 
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the active layer, they can harness either higher-energy 

ultraviolet (UV) radiation or lower-energy infrared 

radiation and transform to electrical energy (Jain et al., 

2024). OSCs offer great advantages in terms of 

lightness, ease of manufacture, low cost and 

environmental friendliness compared to traditional 

silicon-based solar cells. Recently, PCE has increased 

from less than 3% to over 18% (Hu et al., 2020).  

In general, semi transparent organic solar cells 

(STOSCs) can be composed of a semi transparent active 

layer with a structure of transparent electrodes at the top 

and bottom, and show great potency in building 

windows, car windows and greenhouse roofs to meet 

human or plant needs (Han et al., 2021). Although semi 

transparent organic photovoltaics (STOPV) are not yet 

commercially available. The challenge of balancing 

device efficiency and AVT remains a topic of interest 

for researchers. Efforts are being made to increase 

efficiency to meet commercial standards while also 

optimizing AVT (Amin et al., 2023). The development 

of wide area STOSC requires increased transparency 

and a simple manufacturing operation as key industrial 

requirements. One solution is the fully solution 

processed IEICO-4F non-fullerene acceptor based 

STOSC with slot die coating, demonstrating 11% 

efficiency and 58% AVT (Ghosh et al., 2023). 

Perovskite 

Perovskite cells (PSCs) are of interest to researchers 

around the world because of their high energy conversion 

efficiency, inexpensive materials and ease of 

manufacture (Srivishnu et al., 2023). PSCs have excellent 

potential for large-scale industrialization in the near 

future due to the rapid growth of PCE from 3.8% to 

25.5% and its low production costs (Chen et al., 2022). 

Perovskites are materials with an ABX3 crystal structure, 

and on this hybrid crystal structure, PCSs possess tunable 

bandgaps (1.3 - 2.2oeV), high absor-ption coefficient 

(5.71040cm-1 at 600onm), and a high degree of 

transparency (Noman et al., 2024). Compared to a solar 

cell design, FAPb-I3 perovskite PV cell with the highest 

efficiency of 25.8% and power conversion efficiency of 

0% has been applied in this PV cell, and FAPb-I3 

perovskite PV cell has achieved efficiency of 15.1% and 

power conversion efficiency of 40%. Upon full 

dimensional parameter improving, the AVT can attain 

to 41.1%, 52.6%, 33.4% and 60.3% while the efficiency 

of FAPbI3 perovskite PV cell is 10%, 12%, 15% and 

17%, appropriately (Zhou et al., 2023). In recent solar 

cell efficiency tables, it can be found that PCE reaches 

17.9 – 29.8% (Green et al., 2022). 

PSC has excellent commercial potential, but there are 

so many factors that need to be addressed. The 

efficiency of PSCs can be affected by several factors, 

including the prohibitive cost of gold electrodes, 

additives, temperature, moisture and UV illumination, 

degradation in the presence of oxygen, toxicity of lead, 

thermal stress, electrical bias, and interface. It is 

important to consider these factors when evaluating 

the result of PSCs (Sharma et al., 2022). 

In the case of the solar cells discussed in this article, it 

is evident that the majority of the evolving semi 

transparent categories now are at a commercial level, 

but from an aesthetic point of view, the colour and 

component construction need to be seriously 

rethought. Due to the non-unchanging absorption 

coefficient of absorbing films and the multi-layered 

nature of PV cells, the irradiance passing through the 

cells modify the spectral colours coordinates of the 

passing sunlight to a varying degree depending on the 

density of the absorber layer (Sun & Jasieniak, 2017).  

 
Conclusions 
1. Comparing the reviewed materials, shows that the 

most promising materials for semi transparent solar 

panel production and application in greenhouse 

constructions could be organic and perovskite, due 

to the results achieved by their PCE and AVT. 

2. With the rapid development of new materials and 

structures for the manufacture of semi transparent 

solar panels, it is possible to achieve a balance 

between average visible transmittance (AVT), power 

conversion efficiency (PCE), and design of 

construction, which allows to vary temperature, the 

intensity of the required light and the colour spectrum 

according to the goal to be achieved, in the same time 

fulfilling certain requirements of power needs.  
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